超平坦、超柔性金剛石膜的規模化生產!
金剛石是一種特殊材料,由於其有趣的特性,在各個領域都具有巨大的潛力。然而,儘管過去幾十年來付出了巨大的努力,生產大量所需的超薄金剛石膜以供廣泛使用仍然具有挑戰性。
鑑於此,香港大學褚智勤教授、Yuan Lin教授、北京大學東莞光電研究所Qi Wang教授和南方科技大學李攜曦教授證明了使用膠帶進行邊緣暴露剝離是一種簡單、可擴充套件且可靠的方法,可用於生產超薄和可轉移的多晶金剛石膜。該方法可以批次生產大面積(2 英寸晶圓)、超薄(亞微米厚度)、超平(亞奈米表面粗糙度)和超柔性(360° 可彎曲)金剛石膜。這些高質量的膜具有平坦的可加工表面,支援標準的微製造技術,其超柔性特性允許直接進行彈性應變工程和變形感測應用,而笨重的金剛石膜則無法做到這一點。系統的實驗和理論研究表明,剝離膜的質量取決於剝離角度和膜厚度,因此可以在最佳操作視窗內穩健地生產出基本完整的金剛石膜。該單步方法為大規模生產高品質金剛石膜開闢了新途徑,有望加速金剛石時代在電子、光子學和其他相關領域的商業化和到來。相關研究成果以題為“Scalable production of ultraflat and ultraflexible diamond membrane”發表在最新一期《Nature》上。
【單步剝離】
剝離過程首先使用微波等離子體化學氣相沉積(CVD)在矽(Si)基底上生長金剛石膜。關鍵步驟包括建立新邊緣以暴露金剛石和基材之間的介面。這是透過使用劃線筆手動裁剪晶圓邊緣或使用商用切割機來實現的。透過將膠帶粘在金剛石頂部表面並沿介面剝離,可以將完整的2英寸金剛石膜剝離並保持結構完整性。圖1a展示了剝落過程的示意圖。2英寸金剛石膜剝離前後的影象如圖1b所示。剝離金剛石膜呈現出高光學透明度(圖1c)。透過過去三十年實現的膜尺寸的比較結果,顯示了該方法的可擴充套件性。總的來說,單步方法的簡單性和成功凸顯了其大規模生產的適用性。
圖 1. 剝離晶圓級金剛石膜
【卓越的膜品質】
為了驗證剝離金剛石膜的質量,作者進行了全面的材料表徵:拉曼光譜證實了鑽石的性質,顯示出1332cm -1處的特徵峰。X射線光電子能譜(XPS)顯示生長表面存在輕微的sp²碳汙染,但埋藏表面仍保持純度。X射線衍射(XRD)表明金剛石的(111)晶面優勢。薄膜表現出卓越的特性(圖2):高光學折射率(450 nm處為2.36),可見光範圍內的低消光係數(圖2e)、大電阻(大約1010 Ω)和測量了高導熱率(約1300 Wm−1K−1)。所有這些都與標準SCD樣品的表面相當(總結在圖2f中)。相比之下,該金剛石膜表現出比塊狀SCD更低的機械硬度和表觀楊氏模量,這主要歸因於厚度變薄。
為了評估剝離過程對膜質量的潛在影響,作者透過製造隔離晶片陣列(每個晶片陣列包含一對金電極,如圖2g)來繪製表面電阻。2英寸金剛石晶片剝離前(圖2g)和剝離後(圖2i)的頂部。相對均勻的電阻分佈(圖2h)表明該膜在整個2英寸晶圓上的一致性,並且在剝離後幾乎保持不變(電阻總體下降,可能與與矽基板的分離有關)。
圖 2. 剝離金剛石膜的詳細表徵
【膜的超平整度】
金剛石膜的表面粗糙度對於需要精密奈米加工的應用至關重要。由於與矽襯底的介面平坦,膜的掩埋(剝離)表面明顯比生長表面更光滑。主要發現:生長表面粗糙度 (Ra):~36.2 nm。埋入表面粗糙度 (Ra):~0.95 nm。在更光滑的基材上最佳化生長可達到 Ra ~0.61 nm。超平坦的埋入表面使膜成為納米制造的理想選擇,透過金剛石諧振器和奈米柱的成功奈米圖案化證明了這一點。
圖 3. 機械剝離金剛石膜的超平整度
【膜的超柔韌性】
與金剛石眾所周知的硬度相反,厚度的減少和多晶性質使其具有顯著的靈活性:厚的薄膜可以彎曲360°,並纏繞在半徑小至2mm的圓柱體上。這種靈活性源於透過滑動機制調節應變的晶界和位錯。圖4(a,b)照片顯示金剛石膜的彎曲能力。膜包裹在不同的圓柱形基底上(圖4c)。應變工程結果(圖4d):金剛石膜實現了高達~4.08%的彈性應變。作者透過比較(圖4e)結果顯示其在報道的多晶金剛石樣品中具有優越的靈活性。此外,實際演示(圖4f-i)製造柔性應變感測器陣列並用於檢測肌肉變形。
圖 4. 用於可穿戴電子產品應用的柔性金剛石膜
【邊緣暴露剝離方法的可靠性】
為了確保剝離方法的可靠性和可重複性,採用了受控剝離裝置。剝離效能取決於剝離角度和膜厚度。對於較厚的膜(800 nm和1000 nm),可以使用大範圍的剝離角度(20°–90°)來獲得無裂紋的膜(圖5b)。當膜厚度達到600 nm時,引起最少裂紋的剝離角度工作範圍縮小至40°–70°,並且對於更薄的膜,該操作視窗繼續縮小。作者強調2英寸膜剝離成功率接近100%。約30°至90°之間的剝離角度可以避免裂紋擴充套件。當厚度達到600nm時,引起裂紋擴充套件機率最小的剝離角度範圍縮小至45°~65°(圖5c)。關於裂紋密度,在最佳條件下微裂紋是最小的。這些結果與不同剝離膜中觀察到的裂紋密度非常吻合(圖5b),因此可用於指導無裂紋膜的大規模生產。
圖 5. 影響機械剝離金剛石膜質量的因素
【總結】
本文證明了邊緣暴露剝離法是一種簡單、快速的商業化生產可轉移、晶圓級、超薄和超平金剛石膜的方法。透過實驗演示和計算分析確定的最佳操作視窗為實現標準工業生產提供了指導。此外,該方法可擴充套件且適用於任何膜厚度和尺寸。與標準單晶塊體金剛石相比,該膜顯示出卓越的光學特性(450 nm 波長下的折射率約為 2.36)、熱導率(約 1300 W m-1 K-1)和電阻率(約 1010 Ω)。與其他方法不同,使用本文的方法生產的膜足夠平整(粗糙度 < 1 nm),可用於精確的微加工和奈米加工。釐米級樣品的支撐變形(約4%的應變)在宏觀維度上實現了彈性應變工程,為下一代基於金剛石的電子學(例如場效應電晶體,p-n結二極體),光子學(例如拉曼鐳射器,紫外線探測器,包括超透鏡和超表面的平面光子裝置,包括環和腔體諧振器,波導,奈米柱的光子結構),力學(例如機械懸臂樑,微機電系統裝置),熱學(例如片上散熱器),聲學(例如表面聲波濾波器,平面聲學超材料)和量子技術(例如可擴充套件和可定製的裝置)開闢了可能性。
來源:高分子科學前沿
宣告:僅代表作者個人觀點,作者水平有限,如有不科學之處,請在下方留言指正!